Parasitism rates and sex ratios of a parasitoid wasp: effects of herbivore and plant quality

Laurel R. Fox\textsuperscript{1}, Deborah K. Letourneau\textsuperscript{2}, Jamin Eisenbach\textsuperscript{1}, and Saskya Van Nouhuys\textsuperscript{1}

\textsuperscript{1} Department of Biology and \textsuperscript{2} Environmental Studies Board, University of California, Santa Cruz, CA 95064, USA

Received October 24, 1988 / Accepted in revised form February 15, 1990
Summary. We studied interactions among collards, *Brassica oleracea* var. *acephala*, the diamondback moth (DBM), *Plutella xylostella* (Lepidoptera: Yponomeutidae) and its parasitoid *Diaegma insulare* (Hymenoptera: Ichneumonidae) by manipulating plant nitrogen (N) concentrations in field and laboratory experiments. Parasitoid abundance strongly reflected DBM abundance and was related to total leaf N. Parasitism rates were high (70.7%) and density-independent. Wasp sex ratios varied markedly (3–93% female) in response to the herbivores, the plants, or both. Higher proportions of female wasps emerged from DBM larvae on plants with high leaf N than on unfertilized plants. More female wasps also emerged from larvae parasitized as larger instars. We suggest that wasps have the potential to control DBM populations through long-term numerical responses mediated by variable sex ratios.

**Key words:** Sex ratio – Host-parasitoid interactions – Nitrogen – *Plutella xylostella* – *Diaegma insulare* – *Brassica oleracea* var. *acephala*

Dynamics of parasitoid-host interactions often emphasize density relationships between the species (Southwood and Comins 1976; Anderson and May 1978; Hassell 1978, 1986; May and Anderson 1978; Fishlin and Baltensweiler 1979; Murdoch 1979; Murdoch et al. 1984, 1985; Strong 1984, 1986; Hassell and Waage 1984; Reeve and Murdoch 1985; Walde and Murdoch 1988; Murdoch and Stewart-Oaten 1989). Two recent models also considered variation in parasitoid sex ratios in the context of dynamic interactions (Hassell et al. 1983; Comins and Wellings 1985). Parasitoid-host interactions are affected by sex ratios because only females forage for hosts (functional response), and the sexual allocation of their progeny directly affects the numerical response.

Proximal factors influencing biased sex ratios of both parasitoids and their hosts have received particular attention. Several factors, both intrinsic (e.g., meiotic drive of Y chromosomes, inherited microorganisms) and extrinsic (e.g., local resource competition, mate competition, host size, physical environment) differentially affect the production of one of the sexes (Hamilton 1967; Bouletreau 1976; Kfir and Luck 1979; Charnov 1979, 1982; Charnov et al. 1981; Waage 1982a,b; 1986; Werren 1984; Charnov and Skinner 1984, 1985; Clarke 1984; Porter 1984; Walker 1984; Luck and Poldler 1985; Werren et al. 1986; Nunney and Luck 1988; King 1989).

Nutritional or allelochemical variation in hosts or their food plants may modify the dynamics of parasitoid-host interactions by influencing growth and survivorship of immature parasitoids (e.g., Campbell and Duffey 1979, 1981; Barbosa and Saunders 1985; Barbosa 1988) and oviposition choices of adults (Vinson 1981; Williams et al. 1988). We show that plant and herbivore quality also affect the sex ratio of the parasitoids and therefore the dynamics of parasitoid-host interactions. We describe a three-trophic level system in which sex ratios of a solitary ichneumonid wasp, *Diaegma insulare* Cress. were influenced by the quality of their hosts, larvae of the diamondback moth (DBM) *Plutella xylostella* (L), and apparently also by differences in the quality of the plants, collards (*Brassica oleracea* var. *acephala* L) eaten by the DBM larvae. In field and laboratory experiments, female-biased sex ratios of the wasps were correlated with higher nitrogen (N) concentrations in the foliage consumed by DBM.

**Methods**

Field experiments were conducted adjacent to the farm on the University of California, Santa Cruz campus. The 1.5 ha site has shallow, relatively infertile, marine bench soils. Both field and laboratory experiments were conducted with an open-pollinated variety
of collards, Champion®. Collards were grown initially in Speedling® trays; after the cotyledon stage, they were fertilized daily with dilute fish emulsion until they were transplanted either into the field or into 7.6 l pots for field experiments. Details of the site and general soil amendments are given in Letourneau & Fox 1989.

**Main field experiment**

We monitored the development of insect communities on collards planted in 16 plots (4.8 m x 4.8 m) of 81 plants (9 x 9 grid) from July to September 1986. Plants were 60 cm apart within a plot, and there was 8 m between plots. We used four treatments of nitrogen (N) fertilizer, added as a 3:1 ratio of ammonium sulfate and ammonium nitrate. Treatment 1 was unfertilized soil, with a basal N level of 67 kg/ha in preliminary soil analyses. We added sufficient N fertilizer to obtain 90, 112 and 336 kg/ha of soil N in treatments 2, 3, and 4. The soil N recommended by UC Agricultural Extension is 112 kg N/ha (N. Welch, pers. comm.). The experiment was set up as a randomized complete block design, with four blocks of the four N treatments. Eight weeks after transplanting, we collected all DBM larvae and pupae from the central grid of 25 plants in each plot and reared them to pupation on collard leaves in the laboratory.

**Small-scale field experiments**

During August and September 1986, we ran two small-scale experiments using collards grown in pots with field soil. Two fertilizer treatments were used: no fertilizer (Low N plants; ~67 kg N/ha in soil) and fertilized (High N plants; ~224 kg N/ha in soil); plants in pots could not tolerate the highest level (~336 kg N/ha) used in the main field experiment.

The first small-scale experiment compared the effect of plant heterogeneity on insect choice. We set up three groups of 16 potted plants (4 x 4 grid) with plants 1 m apart. Groups consisted of all High N, all Low N, or alternating High N and Low N plants in the grid. Groups were 3 m apart. We collected all DBM on each plant after 4 weeks and reared larvae to pupation on collards.

The second small-scale experiment tested the effects of herbivore properties vs plant properties on parasitism rates and sex ratios. We reared DBM on High N and Low N plants in the laboratory until they were 3rd instar larvae, then placed them on High N or Low N plants in 6 experimental plots. Plants were grouped into 3 blocks of one high N and one low N plot. Each plot contained 49 collards in pots, set 60 cm apart in a 7 x 7 grid. We placed 2 larvae on each of 8 experimental plants, randomly selected from the inner 5 x 5 grid. Half the DBM larvae were placed on plants in plots of the same N level as that on which they had been reared, and half on plants in plots of the alternate N level. After 4 days, all DBM were collected and reared to pupation on collard leaves. The experiment was repeated (with different plants) three times in two blocks and twice in the third, for a total of 8 replications and 64 DBM larvae in each of the 4 treatments. Because the recovery of DBM varied with treatment and because the number of emerging wasps was low in some replicates, we combined data from all replicates for the analyses.

**Laboratory choice experiments**

We reared DBM on High N and Low N collards in the laboratory and offered them as 3rd instar larvae to ovipositing wasps. In each cage (0.5 x 0.5 x 0.5 m), 10 High N larvae were placed in a bowl with one High N leaf, while 10 Low N larvae of similar size were put in an adjacent bowl with one Low N leaf. We let 3 female wasps oviposit on these larvae for 2 h, and then reared the larvae to pupation on high N collards. There were 13 replicates. Plants were grown in 0.11 l pots in potting soil. High N plants were fertilized with 25 ml of Peters Fertilizer® 3 times per week. Low N plants were fertilized once a week.

**Parasitoid responses to DBM age-classes**

We ran three laboratory experiments in which different combinations of DBM instars were available as oviposition sites for recently emerged and mated D. insulare females: 1) all four larval DBM instars were available for oviposition by wasps at the same time (7 replicates); 2) 2nd and 3rd instar larvae were offered together (12 replicates); 3) 2nd instars and 3rd instars were offered separately (9 replicates). In each replicate, 8 DBM larvae of each instar were exposed to 2 female wasps for 3 hours on collard leaves kept turgid in Aqua Puc®. Since some larvae were lost in handling, parasitism rates and wasp sex ratios were calculated from the net numbers of DBM larvae that pupated.

**Plant nitrogen**

We assessed four aspects of plant quality. In all treatments of the main experiment we estimated leaf N as total Kjeldahl N (Allen 1974) and NO₃ (using a specific ion electrode and an ion suppressor solution to reduce interference; Orion 1986). We also estimated total N in potted collard leaves. At the highest and lowest N fertilizer treatments of the main experiment we also estimated leaf protein by the Bradford test (with BSA as the standard protein; Compton and Jones 1985). In the main experiment, we sampled leaves for total N on August 28, and for total N, NO₃ and protein on September 11, when the experiment ended. We sampled leaves from the small-scale field experiments at the end of those experiments in mid-September. Leaves or leaf discs (~1 cm diam) collected for N analyses were dried at 60°C for 48 h.

**Insect size**

We assessed DBM and wasp size primarily as total adult body length, using a Nikon measuring microscope (ShopScope®) to measure from the vertex of the head to the distal end of the abdomen. Wet weights of unparasitized DBM pupae from the experiment on herbivore vs. plant quality were also used as an estimate of herbivore size.

**Statistics**

We used SAS (SAS 1988) for correlations, regressions, ANOVAs (2 way randomized complete block designs for the main experiment) and t-tests. We used BIOMET (Sokal and Rohlf 1981) for G-tests (Goodness of Fit Tests) for sex ratios and survival in the smaller experiments; all G-values have been adjusted with Williams' correction (Sokal and Rohlf 1981).

**Results**

**Density and parasitism rates**

The number of parasitoids that emerged from DBM in the main field experiment was strongly related to the number of their hosts in each plot (Fig. 1A; r = 0.97, P < 0.0001, n = 16 plots). As the number of DBM rose from 15 to over 45 per plot, the number of Diadegma also tripled, from about 10 to over 30 per plot. Therefore, parasitism rates over all the plots were uniformly high (x = 70.7% ± 1.7 SE), and were independent of DBM abundance (Fig. 1B; r = -0.13, P = 0.62).
Variation in insect abundance was associated with leaf properties related to nitrogen (Table 1). DBM abundance was marginally correlated with total leaf N ($r = 0.39, P = 0.07$), while the number of wasps was strongly correlated with total leaf N ($r = 0.57, P = 0.02$). The % parasitism was lowest in plots without additional fertilizer inputs (level 1, Fig. 1B); but the statistical relationships between parasitism rate and foliar N ($r = 0.47, P = 0.07$) and protein ($r = 0.65, P = 0.08$), were marginal. Neither DBM nor wasp abundance was related at all to leaf NO3.

DBM abundance was also higher on High N plants in the first small-scale experiment, in which the moths colonized homogeneous and mixed plots of potted collards for four weeks (Table 2, 1-way ANOVA, $F = 4.06, P = 0.0125$; High N plants had significantly more DBM [Duncan’s Multiple Range Test]). DBM density was particularly low on the Low N plants in mixtures. Differential larval survival may explain part of the trend relating DBM abundance to leaf N, because in the second small-scale field experiment we recovered only 35% of the original 128 3rd instar larvae on Low N plants after 4 days, while we found 63% of those on the High N plants (Table 3; $G = 15.11, 1$ df, $P < 0.001$).

In both of these small-scale field experiments, parasitism rates varied from 38% to 61% (Tables 2 and 3) but, as in the main field experiment, these rates were independent of DBM density.
Parasitoid sex ratios varied from 23% to 68% female in the main experiment. The mean percentage of female wasps increased with fertilization level from 39%–53%; this variation was marginally associated with leaf N and NO₃ concentrations (Table 1). Parasitoid sex ratios responded more clearly to treatment in both small-scale field experiments. In the first experiment, fewer female wasps emerged from hosts feeding on Low N plants than from those on High N plants in the homogeneous arrays (29% vs. 53%); in the heterogeneous plots, too few wasps emerged from hosts on Low N plants to interpret the data.

The second small-scale experiment, in which we varied insect feeding history and plant N, was designed to test whether parasitoids respond to host or to plant cues (Table 3). While 93% of parasitoids emerging from high quality DBM feeding on High N plants were females, only 58% of the wasps emerging from low quality DBM on Low N plants were female (G = 4.96, df = 1, P < 0.05); intermediate percentages of females (70–79%) emerged from larvae in the crossed treatments. These results suggest that parasitoid sex ratios were sensitive to both herbivore and plant quality. However, it is possible that DBM larvae responded to the changes in their diets in the crossed treatments, and that wasps may have been able to detect these differences rather than plant quality itself.

In each field experiment, the range in the percentage of female wasps spanned approximately 40% among plots, although the absolute percentages varied among the experiments. While the strongest relation between wasp sex bias and fertilizer level was in the experiment in which we set out 3rd instar DBM larvae for 4 days, all three field experiments showed the same overall trend: fewer female wasps in the low fertilizer regimes.

The sex ratio biases in laboratory experiments, which excluded any extraneous factors that might have influenced wasp behavior, were even greater than in the field. In these choice experiments, more of the Low N larvae (on Low N leaves) were parasitized than High N larvae on High N leaves (61 vs 25), but 76% of the wasps emerging from the High N larvae were female; in contrast only 3% of the wasps from the Low N plants were female (G = 50.4, df = 1, P < 0.001).

### DBM instar

Female wasps had clear oviposition preferences among DBM instars. No parasitoids emerged from DBM that were offered to ovipositing wasps as 1st instars, but 26–36% of the larger instars were parasitized.

Wasp sex ratios were affected by DBM instar at parasitization (Table 4). Wasps emerging from DBM parasitized as 2nd instars were more likely to be males (20–45% female; 30% of 2nd instars in all 3 experiments), while those emerging from DBM parasitized as 3rd and 4th instars were mainly females (65–80% female; 70%

### DBM body size

Wasp sex ratios could not be explained by differences in size of DBM larvae from the different fertilizer treatments. Neither female nor male DBM body length varied significantly with treatment in the main field experiment (2 way ANOVAs, F = 0.93 and 1.05, both P > 0.4; females were 4.16 ± 0.13 mm in length, vs. males 4.21 ± 0.08 mm). Female and male sizes among plots were only weakly correlated (r = 0.45, P = 0.08), and wasp sex ratios were not correlated with DBM size (r < 0.2 for both sexes).

In the first (4 week) small-scale field experiment, male DBM were significantly longer on the High N plants than on the Low N plants (t-test, df = 20, P = 0.0175), although weights of DBM pupae from the High N and Low N plants were not significantly different (7.47 ± 0.16 mg vs. 7.09 ± 0.20 mg; t-test, P = 0.15). Therefore, differences in wasp sex ratios among plots were not based on differences in DBM body length.

### Wasp body size

Wasp body size was not consistently related to fertilizer treatment. In the main field experiment, male wasp length was nearly significant among treatments (2-way ANOVA, F = 2.48, P = 0.056) and it was correlated significantly with leaf N (r = 0.52, P < 0.05); but female wasp sizes did not vary with treatment (2-way ANOVA, P = 0.59). However, in the first small-scale experiment with potted collards, female wasps were significantly larger in the High N treatment than those in the Low N treatment (t-test, df = 21, P = 0.0254).
Discussion

Properties of food plants affected several components of the collard-DBM-Diadeagma system. Parasitoid abundance was directly related to DBM numbers, and both were correlated with total N in collard foliage. However, the mean percentage of DBM parasitized (70.7%) was independent of DBM density. Waage (1983) found that parasitism rates by Diadeagma eucnepheca on DBM in England were constant at around 70%. However, parasitism rates were more variable in other studies of DBM: 41–57% by D. eucnepheca and D. rapa (combined) in southern Australia (Goodwin 1979), and 0–80% (x̅ ~ 33%) and 9–23% by D. insulare in Canada (Harcourt 1963) and Ohio (Horn 1987), respectively.

Wasps from high quality hosts on high quality plants had high female-biased sex ratios in all experiments. Relatively few female wasps emerged from herbivores feeding on lower quality collards. Over all the field experiments, sex ratios of the parasitoids varied from 93% to 23% females on High N vs. Low N plants. Short-term laboratory experiments gave similar results, 76% vs. 3% female. Our experiments cannot distinguish whether the parasitoids responded to characteristics of DBM larvae that were influenced by plant quality, to properties of the food plants themselves, or to both.

Diadeagma spp. are known to have variable sex ratios. For example, strongly male-biased sex ratios (25% female) were one factor preventing D. eucnepheca from regulating populations of DBM in Malaysia (Chua and Ooi 1986). Sex ratios varied from 24–68% female in Waage’s (1982) laboratory work. From an extensive k-factor analysis of long-term data spanning many generations, Harcourt (1986) concluded that D. insulare caused density-dependent mortality of DBM, in direct contrast to findings of short-term studies within single generations (e.g., Waage 1983 and this study). Harcourt’s k-factor analysis included numerical responses of parasitoids and hosts between generations. We propose that changes in sex ratios provide the mechanism for altering the numerical response between generations and that this mechanism gives Diadeagma the ability to control the density of DBM.

Skewed sex ratios are observed in many species, especially haplo-diploid Hymenoptera (Bull 1983). These ratios have been linked, at least in theoretical studies, to the spatial structure of populations and to differential distribution of resources with respect to the sexes (Hamilton 1967; Charnov 1982; Warren 1984; Comins and Wellings 1985), and more recently to synchrony of brood maturation and male dispersal (Nunney and Luck 1988). Many studies have also shown that more females emerge from larger hosts, including larval parasites (reviewed in King 1989), as we found in our study. In this paper we have proposed additional mechanisms for producing sex ratio biases; namely, that sex ratios are strongly influenced by differences not only in host quality, but in plant quality as well.

Acknowledgments. This research was supported by USDA Competitive Research Grant 85-CRRC-11590 and grants from the UCSC Academic Senate and the UCSC Division of Natural Sciences Seed Money Fund to LRF and DKL, and by NSF grant BSR 8819437 (to LRF). We thank Marshall Sylvan for statistical advice, Donald Potts and Christine Otis for improving the manuscript, and N. Welch (Farm Advisor, University of California Agricultural Extension) for advice on fertilizer applications. Technical support was provided by J. Farrell, J. McKelvey, J. Nelson, R. North, and J. Paulus.

References

Harcourt DG (1963) Mortality factors in the population dynamics